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Abstract

This paper demonstrates that as software developers we introduce a lot of inadvertent 
complexity into the software we produce. It presents a method for removing inadvertent 
complexity and shows how any software developer can easily learn to identify it in 
source code. 

The paper starts with a hypothetical scenario of software development showing how 
bugs can come into being essentially from nothing. The paper also claims that the cur-
rent ways of producing software leave much to be desired. The main argument is that 
there is a lot of inadvertent complexity in the software produced by the industry and that 
it is possible and feasible to get rid of. 

The paper presents four experiments and their results as evidence. All experiments use 
the Tick-the-Code method to check source code on paper. The experiments show that 
both the developers and the source code they produce can be significantly improved. 
The results indicate that, almost regardless of the target source code, the developers 
can easily find and suggest numerous improvements. It becomes clear from the results 
that it is feasible to use Tick-the-Code often and on a regular basis. In one of the ex-
periments, the software engineers created almost 140 improvement suggestions in just 
an hour (of effort). Even in the least effective experiment, the participants created on 
average one suggestion per minute (70/h). 

The last part of the paper demonstrates the effects of ticking code often and on a regu-
lar basis.  For a software organization, nothing makes more sense than to improve the 
coding phase and make sure it is up to par. Once inadvertent complexity is kept in 
check on a regular basis, other concerns, like requirements analysis, can be more read-
ily taken into consideration. As long as the organization has to waste time on reworking 
requirements and careless coding, maturity of operation is unachievable. 
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1. The Claim: Complexity Hole Causes Bugs
The software industry still shows signs of immaturity. Errors are part of usual practice, 
project failures are common and budget overspends seem to be more the rule than the 
exception. The industry is still young compared to almost any other branch of engineer-
ing. Tools and methods are changing rapidly, programming languages keep developing 
and ever more people are involved in software projects. The industry is in constant tur-
moil. 

1.1. A Development Episode
Let’s dive deep into a developer’s working life. John, our example software developer, is 
about to create a new class in C++. The requirements tell him what the class needs to 
do. The architectural design shows how the class fits with the rest of the application. 
John starts writing a new method. The method starts simply, but soon the code needs to 
branch according to a condition. John inserts an if statement with a carefully consid-
ered block of code for the normal case of operation. In his haste to finish the class in the 
same day, John forgets to consider the case when the conditional expression isn’t true. 
Granted, it is unusual and won’t happen very often. 

if(FLAG1 & 0x02 || !ABNORMAL_OP)
{
 header(param, 0, 16);
 cnt++;
}

One of the class member variables is an array of integers for which John reserves 
space with a plain number 

int array[24];

In the vaguely named method ProcessStuff(), John needs among other things to go 
through the whole array. This he accomplishes with a loop structure, like so 

for(int i=0; i <= 23; i++)

In order to send the whole array to another application, the method Message() pack-
ages it along with some header data in a dynamically reserved array 

Msg *m = new Msg(28); 

As it doesn’t even cross John’s mind that the code could run out of memory for such a 
small message he doesn’t check for the return value from the statement. 

By the end of the day, John has tested his class and is happy with the way it seems to 
satisfy all functional requirements. In two weeks’ time, he will change his mind. The sys-
tem tests show several anomalies in situations John would consider exotic or even im-
possible in practice. The tests need to pass though and John has no alternative but to 
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try and modify his class. This proves harder than expected and even seemingly simple 
changes seem to break the code in unexpected ways. For instance, John needs to send 
more integers over to the other application, so he changes the for loop to look like 

for(int i=0; i <= 42; i++)

That change breaks his class in two places. It takes several rounds of unit testing for 
John to find all the places related to the size of the array in the class. The hard-coded 
message packaging routine Message() stays hidden for a long time causing mysteri-
ous problems in the interoperability of the two applications. The code works erratically, 
sometimes crashing at strange times and other times working completely smoothly.

This development example shows how seemingly innocent design decisions lead to 
complex and strange behavior. John’s slightly hurried decisions are often mistakes and 
oversights, which cause real failures in the application. The failures affect the test team, 
frustrate John, anger his manager and in the worst case, cause the customer to lose 
faith in the development capability of the company employing John. There is a lot of 
seemingly innocent complexity in source code produced today all over the world. Taking 
it out is possible and even feasible, but because of a general lack of skill, ignorance of 
root causes of failures and a defeatist attitude towards faults, not much is being 
achieved. Constant lack of time in projects is probably the biggest obstacle for more 
maintainable and understandable code. 

Although complexity in software is difficult to quantify exactly, we can divide it into two 
categories for clarification: 

a) essential complexity (application area difficulties, modeling problems, functional is-
sues)

b) inadvertent complexity (generic programming concerns, carelessness)

This paper deals with b) inadvertent complexity.

The current working practices in the software industry leave a gaping hole for inadver-
tent complexity to creep into the source code. In large enough doses, it adversely af-
fects all activities in software projects, not just coding. Inadvertent complexity is rampant 
in source code today, yet currently there are no incentives or effective methods in use to 
get rid of it. Inadvertent complexity is holding the software industry back. Inadvertent 
complexity is an unnecessary evil, it does not have to be this way.
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2. The Evidence: Complexity NOW
Next four real-life experiments. A few terms related to the Tick-the-Code method used 
in the experiments need to be explained. ‘A tick’ in code marks a violation of a rule. A 
tick doesn’t necessarily mean a bug, in most cases it denotes an environment where 
bugs are more difficult to identify. Some ticks precede bugs. The best way to think about 
ticks is to see some of them (perhaps every third) as realistic improvement suggestions. 
‘A rule’ is a black-and-white statement. Code either follows a rule or it doesn’t. “Do not 
divide by zero” is a rule. Each rule has a name, which in this paper is written in capital 
letters (RULENAME). ‘Ticking’ refers to a checker going through source code marking 
rule violations one rule at a time. In other words, ticking produces ticks. ‘An author’ is 
the person responsible for maintaining the source code, not necessarily the originator. 
‘A checker’ ticks the source code. ‘A checker’ needs to be familiar with the programming 
language (although not necessarily with the source code.) For more information, see 
Chapter 3. or [2].

2.1. Experiment: Free Ticking for an Hour
In this experiment, the participants were taught Tick-the-Code as a theoretical exercise. 
They were then given an hour to tick their source code using any of the predefined 
rules. The participants had been instructed to bring approximately one thousand physi-
cal lines of code with them. Table 1. summarizes the results.

Participants Total time Total lines 
(physical)

Total ticks Average rate 
of finding

85 81h45min 93393 5900 72 ticks/h

Table 1. Experiment: Free Ticking for an Hour. With proper guidance, it takes on average less than a 
minute for a software developer to generate a tick (= source code improvement suggestion). The experi-

ment took a little more than a week to conduct between Feb 6 and Feb 15, 2006.

2.2. Experiment: Before and After
Almost eighty software developers from six software companies took part in Experi-
ment: Before and After. The participants were first asked to “perform a code review” 
on their own code. They were given 15 minutes to complete the task and no further ex-
planation as to what “performing a code review” means. After fifteen minutes, the num-
ber of markings they made was collected. The severity of the markings was not judged. 
The collected results were extrapolated to a full hour. The participants were then taught 
a new method of checking called Tick-the-Code. This took about two hours. They were 
given an hour to tick the same code as before. The number of ticks was collected.

The graph in Figure 1. shows the ‘before’ and ‘after’ performances of the 78 partici-
pants. In the graph they are ranked in ascending order by their ‘before’ results. In many 
cases, the number of findings for individual checkers were dramatically higher with 
Tick-the-Code than before. It indicates a clear skill gap. Most developers have had no 
idea what to look for in a code review, or have been overlooking smaller items whilst 
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searching for those they believe to be more critical. Given better guidelines and stricter 
rules, they can find places to improve easily and quickly.

Tick-the-Code helps developers cover larger amounts of source code in a relatively 
short period of time. Table 2. summarizes the overall results of the ticking part of the ex-
periment. In less than 80 person-hours, the novice checkers managed to tick over 
80000 physical lines of code creating over 8200 ticks. Even if only 10% of the ticks were 
valid improvement suggestions, the developers had still generated over 800 ways of 
making their code better. This proves that developers can feasibly improve their code 
from its current state.

Participants Total time Total lines 
(physical)

Total ticks Average rate 
of finding

78 78h 80218 8230 106 ticks/h

Table 2. Experiment: Before and After. The results of almost eighty software developers ticking real, 
production-level source code for an hour. Covering over 80000 lines of code systematically and target-
oriented is possible and feasible with negligible time. The tick yield, i.e. the number of source code im-

provement suggestions is massive, considering that most source code had already gone through the ex-
isting quality control processes. The experiment was conducted between May 31 and Oct 23, 2006. 
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Figure 1. The number of findings before (the monotonically increasing line) and after (the 
spikes) learning Tick-the-Code. To be more descriptive, the checkers on the X-axis are 

sorted in ascending order of their extrapolated ‘before’ results. In most cases the extrapo-
lated result is much lower than the one Tick-the-Code yields. Each pair of values (‘before’ 

and ‘after’) on the X-axis shows the performance of an individual checker.



2.3. Experiment: Five-minute Ticking, or Surely You Can’t Tick Any Faster?
In this experiment there were 144 software developers from different organizations. 
Once again, all participants had about one thousand lines of production-level code. This 
time the participants were given much clearer instruction on the ticking method than in 
the previous two experiments. Each time a rule was presented, the participants had ex-
actly five minutes (!) to search for its violations. Then the number of ticks was recorded. 
Sometimes the participants didn’t get through all of their code, sometimes they man-
aged to have spare time before the bell rang.

The participants checked eight, nine or ten rules in a training session. With the five-
minute limit that meant that everybody spent effectively 40-50 minutes ticking. On aver-
age, each and every participant found 103 ticks in under an hour! In Table 3, you see 
that the average (extrapolated) rate of finding ticks is approximately 136 ticks/h.

Averaging all collected ticks over the effective time used for checking (108h, over all 
participants) gives us some interesting insights. In this calculation we treat the work-
force as a mass of work, nothing more. The ticks the participants found have been given 
to this mass of work and the average has been calculated. See Table 4. for the results. 
The table shows that spending an hour on proactive quality could result in 46 sugges-
tions of improving modularity by refactoring blocks of code inside bigger routines into 
their own subroutines (CALL). Alternatively, a software developer could suggest 53 un-
necessary comments to be removed from clouding the code (DRY). We can also see 
that in one hour, given enough source code, anybody could find over five hundred hard-
coded numbers, character constants and strings (MAGIC). Some of them are missing 
information linking them to their origin and relating them to other values in the code. 
That missing information is certain at least to slow down maintenance but it is also true 
that some of the plain numbers will just plain cause bugs.

Partici-
pants

Total time Total lines
(physical)

Total ticks Average rate 
of finding

144 4d 12h 35min > 100 000 14906 136 ticks/h
Table 3. Experiment: Five-minute Ticking. The training courses took place between 26-Oct-06 and 12-
Jun-07. Unfortunately the experimenter sometimes forgot to collect the numbers of lines from the partici-

pants, but everybody was always instructed to bring about one thousand lines of code. 

Isn’t it illuminating to see that any software developer could complain about 92 bad vari-
able, function and method names and he’d just need an hour to point them out precisely 
(NAME)? It would take longer to come up with better names but not prohibitively so. 
How much does an error cost? How much effort does it take to test, write an error re-
port, find a responsible person, debug, fix, retest and whatever else is part of repairing 
an error? One hour, ten hours, a hundred hours, a thousand hours? How many im-
provement suggestions could be found and taken into consideration before the chaotic 
code results in errors? Table 4. is saying: “Many”. That is the choice for each software 
developer to make. There is the option of continuing to fix errors hoping for the best and 
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then there is the option of proactively preventing errors using methods like Tick-the-
Code to clarify code now. 

Rule

Ticks/h

Rule

Ticks/h

CALL CHECK-IN DEAD DEEP DEFAULT DRY ELSE

46 82 45 76 11 53 322

HIDE MAGIC NAME NEVERNULL TAG UNIQUE

186 516 93 90 18 20

Table 4. The average number of ticks found for each checking hour per rule. Software developers could 
find this many violations in one hour in the code they produce, if they chose to. 144 developers checked 

for 108h to create the data. 

2.4. Experiment: Open Source Wide Open
Ten source code files from four different Open Source projects were randomly selected 
to be ticked. The author ticked all of the modules with 24 Tick-the-Code rules. Once 
again, each file was approximately one thousand physical lines long. Physical lines are 
all the lines in a source code file. Physical lines are the simplest unit of measurement. 
Using them avoids all problems of how to interpret empty lines, or lines containing just a 
comment, or lines with multiple statements. As physical lines, they all count as one line 
each, respectively. In other words, the line numbering of your favorite editor matches 
the definition of physical lines exactly.

For some of the files, several versions from different phases of development were se-
lected. File address-book-ldap.c (later a.c) is a C-language module and there were four 
versions of it: the first version from the year 2000, another version several evolutionary 
steps later from year 2002, and two more dated in 2004 and 2007, respectively. The 
format a.c(04) is used to refer to the third snapshot of file address-book-ldap.c. The file 
lap_init.c (l.c) only had one version to tick. There are two versions from ipc_mqueue.c 
(i.c) and OSMetaClass.cpp (O.cpp). The letters A and B are used to denote the older 
and newer version, respectively. For example, O.cpp(B) refers to the newer version of 
OSMetaClass.cpp. PeerConnection.java (later P.java) was the only Java file included in 
the experiment. See Figure 2. for the sizes of the sampled source code files. The file 
a.c, for example, has grown from a mere 400 lines to 1000 lines over the seven years of 
its development.
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Figure 2. The sizes of the sampled files. ‘Manual’ is the figure the author counted by hand. LOCphy are 
physical lines (should be equal to ‘Manual’, slight errors are visible), LOCpro program code lines, LOCbl 

are blank lines and LOCcom commentary lines. All the LOC counts were generated by CMT++ and 
CMTjava.

In addition to ticking all the modules with all the rules, Testwell Oy, a company in Finland 
(www.testwell.fi) helped with some additional measurements. Their tools CMT++ and 
CMTjava were used to measure C/C++ files and the Java module, respectively. The 
ticking took almost 29 hours to complete, while the tools took only seconds to complete 
their tasks. The ticking revealed over 3700 ticks, i.e. possible improvements. The total 
results are summarized in Table 5.

Checkers Total time Total lines 
(physical)

Total ticks Average rate 
of finding

1 28h 52min 8517 3723 129 ticks/h
Table 5. Experiment: Open Source Wide Open. The experiment took a little more than a month to con-

duct between 5-May and 11-Jun-07.

One of the best known complexity measurements for source code is the cyclomatic 
number [1]. It points out “unstructured” code and uses graph theory to compute the cy-
clomatic number. CMT++ and CMTjava calculate the cyclomatic number for their input 
files. 

An interesting observation: the correlation between the cyclomatic numbers for the ten 
files and the normalized total tick count series is as large as 0.7. Although the sample is 
small, the files were selected in random, so the result isn’t just a coincidence. It seems 
that the ticks and cyclomatic numbers are related and can both be used as indicators for 
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complex source code. See Figure 3. for a graphical view of the cyclomatic number and 
tick counts. Additional experiments are needed to confirm the link. One reasonable 
method would be to remove the ticks already found by refactoring the modules and then 
measuring them again. If there is a relationship between the two, both the tick count and 
the cyclomatic number should go down.

Figure 3. Normalized tick counts and the cyclomatic numbers. The correlation between the series is 
large, 0.7. Please, note that the Y-axis values of the two series have different units.

The Tick-the-Code rules are based on certain principles of coding. Breaking the princi-
ples for whatever reason will usually cause trouble sooner or later. Examining the rules 
more carefully, we can divide them into four categories:

1. Extra baggage
2. Missing info
3. Chaos-inducers
4. Risky assumptions

1. Some of the rules point out unnecessary items in a module file. For example, a com-
ment that repeats what the code already says is just a waste of disk space. A prime ex-
ample is the line

count++; // increment counter
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Not only are they a waste of disk space, any extra comment increases chances of out-
dated comments. Such comments are distracting, and impair maintenance. One rule 
points out such redundant comments (DRY). Another rule points out duplicated blocks 
of code (UNIQUE), which are also usually unnecessary and harmful. A few other rules 
make up the “Extra baggage” category.

2. A few rules aim at noticing when something is missing from the code. One rule asks 
for an else branch to be found at each if statement (ELSE). Whenever a literal num-
ber is used in code (hard-coded), another rule is violated (MAGIC). Literal numbers 
don’t reveal where they come from or if they are related to any other numbers in the 
code. The missing information causes bugs very easily, or at least slows down the main-
tenance work unnecessarily. The category “Missing info” consists of similar rules.

3. There are elements in code that add to the confusion. Usually software is complex to 
begin with, but certain constructs make it even harder to understand. Using the keyword 
return too readily can lead to functions having too many exit points, which can hinder 
understanding of the flow of code and impair its testability (RETURN). Blocks of code 
that could be their own subroutine but are inside a bigger routine instead are unneces-
sarily complicating the source code (CALL). Bad names give code a bad name (NAME). 
This category is called “Chaos-inducers”.

4. Blindly assuming that everything is fine is dangerous in software. Anything could go 
wrong, especially with pointers. A good programmer defends his code by generously 
sprinkling checks for NULL pointers in it. Some rules spot possible references through 
NULL pointers (NEVERNULL), variables used without any checking (CHECK-IN) and 
freed, but not invalidated pointers (NULL). These rules reveal locations where a more 
defensive approach is possible. The category is called “Risky assumptions”. Table 6. 
shows the categories and their rules.

Extra baggage Missing info Chaos-inducers Risky assumptions

DEAD DEFAULT CALL CHECK-IN

DRY ELSE NAME NEVERNULL

INTENT MAGIC RETURN NULL

ONE PTHESES SIMPLE CONST 1ST

UNIQUE TAG FAR ZERO

ACCESS DEEP PLOCAL

HIDE FOCUS ARRAY

VERIFY
Table 6. The four categories of rules. Twenty-four of the rules form the ‘active’ rule-set in Tick-the-Code.
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The normalized tick counts for all categories are shown in Figure 4. Apart from the file 
i.c, all files leave out valuable information, which needs to be dug up or guessed in 
maintenance. Every tenth line of file a.c contains some confusing constructs. On the 
other hand, there doesn’t seem to be too much extra baggage in any of the example 
files. This is hardly surprising considering the tendency in human nature to be too lazy 
rather than overly explicit or verbose. All four categories correlate strongly with the cy-
clomatic number. The correlation for “Extra baggage” is 0.67, for “Missing info” as high 
as 0.96, for “Chaos-inducers” 0.73 and for “Risky assumptions” 0.68.

Figure 4. The normalized tick counts for the rule categories. Files a.c and l.c will be most likely to suffer 
problems in their maintenance because of missing information. On average, more than every third line 
(350/1000) in l.c is missing some information. In this group, the file i.c seems much better to maintain.

2.5. Conclusions Drawn from the Experiments 
A. Software developers could perform much better code reviews than they currently do.
B. Currently produced source code leaves a lot to be desired in terms of understandabil-
ity and maintainability.
C. Tick count measures (at least some aspects of) software complexity, just like cyclo-
matic number does.
D. Software developers could prevent many errors if they chose to do so.
E. The effort to do so would be negligible.
F. Systematic ticking of the code leads to code that is easier to maintain. 
G. Easier-to-maintain source code benefits all stake-holders in the software industry. 
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3. A Solution: Tick-the-Code
[2] describes the details of Tick-the-Code. Suffice to say that it is a rule-based ap-
proach for reviewing code on paper. Checkers mark each and every rule violation on the 
printed paper and deliver the ticks to the author of the code. The author considers each 
and every tick, but maintains the right to silently ignore any one of them. Whenever 
possible the author replaces the ticked code with a simpler, more maintainable version. 
Sometimes the change is simple, sometimes it is more than a trivial refactoring. 

The rules are extremely clear and explicit. They designate an axis and show which end 
of the axis is the absolute evil. For example, there is a rule called ELSE, which says that 
“each if must have an else”. On the one end of the axis there is an if with an else 
branch and on the other extreme there is the if without an else branch. The rule says 
that the former case is right and that the latter is absolutely wrong. The reasoning be-
hind the rule is that if the code could possibly be missing something important (the code 
for the exceptional case in the else branch), it could lead to problems. And vice versa, 
an if with a carefully considered else branch is less likely to be problematic. Missing 
information, or in this case missing code, is a hole in the logic of the code. 

Every ticked if provides the author with a chance to double-check his thinking and fix it 
before a functional bug occurs. The same principle applies to all the rules, most of 
which are not quite as simple to find as rule ELSE. Each rule is based on a solid pro-
gramming principle and divides a dimension into two extremes, one right, one wrong. 
Making the world black-and-white is an excellent way to provide clarity, even though it 
only catches certain errors. The good thing is that it normally catches all of them. Some-
times the else branch contains the wrong kind of code, sometimes it is the if. Com-
bined with a sensible author, this kind of merciless ticking starts to make sense in prac-
tice.

The search is very often the most time consuming part of an error hunt. Not the fixing, 
nor the testing, nor the verification of the fix, but the search. In Tick-the-Code the 
search has been tweaked to be as fast as possible. Even though it is manual, it is fast in 
comparison to most other methods.  It might seem that Tick-the-Code is aimed at mak-
ing the source code better. That is the truth, but not the whole truth. The main purpose 
is to make the checkers better. In other words, in ticking the checkers get to see a lot of 
source code, some of it written by themselves, most of it written by somebody else, and 
they look at code from a different stance than during the source code construction 
phase. Exposure to others’ source code gives them examples of how problems can be 
solved and have been solved. 

With the help of the rules and principles the checkers learn to prevent failures. By see-
ing the code their colleagues are writing they also learn at least what the colleagues are 
working on. Ticking code helps spread information about the developers and their tasks 
among the checkers (i.e. developers). It helps make the current product better and at 
the same time teaches the checkers new ideas and thus helps make future products 
better.
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4. The Effect: Complexity in the Future - a Thought 
Experiment
Regular use of Tick-the-Code makes the produced source code clearer and easier to 
maintain. Clearer source code contains less careless programming errors. There are 
still errors, though. Even a perfect implementation phase cannot produce perfect source 
code if the requirements are poor. The developers will notice that meeting bad require-
ments doesn’t make the customer happy. They can apply the lessons learned from the 
rule-driven and systematic ticking of code. Their analysis can help in gathering require-
ments. They notice missing requirements, vaguely described requirements and several 
unnecessary, or minor requirements or redundant ones. Some of the requirements just 
add to the overall confusion. The developers can considerably improve the quality of the 
requirements when they add the missing ones, reformulate the fuzzy ones, uncover the 
hidden assumptions and remove the unnecessary or dangerous ones and separate the 
minor ones from the important ones. When both the implementation and requirement 
gathering phases are under control, reworking becomes almost unnecessary. Require-
ments meet customer expectations and implementation fulfills the requirements.

Similarly, as the organization saves time with less rework, they can turn their attention to 
other problematic areas. With problems in the coding process, the organization isn’t 
able to build a real software culture. Their whole development process is immature; 
there are design and architecture problems, and both error handling and testing have 
been overloaded. This all can change now systematically. With the basics under control, 
a software development culture can emerge and higher-level concerns like usability can 
come to the fore.  

The most natural place to start making a software organization more mature is coding. 
As the experiments show, many software organizations try to build on the quicksand of 
unnecessarily complex code.
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6. Appendix
A1. Rules

The table provides a list of all the rules mentioned in this paper. For various reasons, 
exactly 24 rules form the active rule set of Tick-the-Code.

Name Rule

DEAD Avoid unreachable code.

DRY A comment must not repeat code.

INTENT A comment must either describe the intent of the code or summarize it.

ONE Each line shall contain at most one statement.

UNIQUE Code fragments must be unique.

Table A1. Extra baggage rules.

Name Rule

DEFAULT A ‘switch’ must always have a ‘default’ clause.

ELSE An ‘if’ always has an ‘else’.

MAGIC Do not hardcode values.

PTHESES Parenthesize amply.

TAG Forbidden: marker comments.

ACCESS Variables must have access routines.

HIDE Direct access to global and member variables is forbidden.

Table A2. Missing info rules.
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Name Rule

CALL Call subroutines where feasible.

NAME Bad names make code bad.

RETURN Each routine shall contain exactly one ‘return’.

SIMPLE Code must be simple.

FAR Keep related actions together.

DEEP Avoid deep nesting.

FOCUS A routine shall do one and only one thing.

Table A3. Chaos-inducers.

Name Rule

CHECK-IN Each routine shall check its input data.

NEVERNULL Never access a ‘NULL’ pointer or reference. 

NULL Set freed or invalid pointers to ‘NULL’.

CONST 1ST Put constants on the left side in comparisons.

ZERO Never divide by zero.

PLOCAL Never return a reference or pointer to local data.

ARRAY Array accesses shall be within the array.

VERIFY Setter must check the value for validity.

Table A4. Risky assumptions rule category.
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A2. Miscellaneous questions and answers

1. How is Tick-the-Code different from implementing coding standards?

The answer depends on what “implementing coding standards” means. To me, Tick-
the-Code “implements coding standards”. What I find is that often people in software 
organizations think they have implemented coding standards when they have written a 
document titled “Coding standards”. The other half is normally missing. Coding stan-
dards need reenforcing. Without constant and active checking, the coding standards are 
not followed. At least you can’t know for sure. 

Tick-the-Code provides a limited set of clear rules and an extremely effective way of 
reenforcing them. The rules don’t deal with stylistic issues and they don’t set naive nu-
merical limitations on the creativity of the developers. On the other hand, the veto rights 
of the author (to ignore any tick) keep the activity sensible. It makes it possible to break 
the rules when necessary without losing effectiveness. Too strict checking can easily 
turn in on itself, and becomes counterproductive.

2. How long does it take to learn Tick-the-Code? Does it depend on the number of 
rules?

The technique of checking one rule at a time is fairly quickly explained and tried out. In 
three hours, I’ve managed to teach the method and hopefully instill a sense of motiva-
tion and positive attitude towards striving for quality to help make Tick-the-Code a habit 
for the participants. It does depend on the number of rules, yes. Some of the rules are 
simple searches for keywords, while others demand a deep understanding of software 
architecture. You learn the rules best when you try them out and when you receive 
feedback on your own code so that you see when you’ve violated certain rules. 

3. How many rules did you use in your tests? What is a reasonable number? Can you 
have too many rules?

Good questions. In most of the experiments, the participants checked for up to an hour. 
Normally they checked with up to nine different rules in that time. I have a rule of thumb 
that says that you can check one thousand lines of code with one card in one hour. One 
card contains six rules and an hour of checking is a reasonable session with complete 
concentration. In the experiments the time for each rule is limited so that the total check-
ing time won’t exceed one hour. 

You can definitely have too many rules, yes. Some coding standards contain so many 
rules and guidelines that if they weren’t written down, nobody would remember all of 
them. The worst example so far has been a coding standard with exactly 200 rules and 
guidelines. How are you supposed to reenforce all those rules?

4. Does awareness of the rules improve the code a developer produces?

Yes, that is the main idea of Tick-the-Code. 
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5. Can different people look at the same code using different rules?

The fastest way to cover all 24 rules is to divide them among four checkers and have 
them check the same code in parallel. Yes, that is possible and recommended.

6. Can it be automated?

Some of the rules are available in static analysis tools, so yes, they can be automated. 
The fact that those rules are most often violated, leads me to believe that such automa-
tion is not working. Whatever the reason, code always contains violations of simple 
rules. Simple means simple to find, not necessarily error-free. Breaking a simple rule 
can have fatal consequences in the code. 

My opinion is that automating the checking of some of the rules is taking an opportunity 
away from the checkers. They need to expose themselves to code as much as possible 
in order to learn effectively. What better way to start exposing than looking for rule viola-
tions, which you are sure to find? Getting a few successful finds improves the motivation 
to continue and makes it possible to check for more difficult rules. 

7. Where do you plan to go from here?

There will be a few articles more in this area, maybe a paper or two, too. I have a book 
in the works about Tick-the-Code. In my plans Tick-the-Code is just one part of a 
quality-aware software development philosophy. I call it ‘qualiteering’. That’s why my 
website is called www.qualiteers.com.

I will continue training people in willing companies and spread the word. It is my hope 
that Tick-the-Code will reach a critical mass in the development community so that a 
vibrant discussion can start in Tick-the-Code Forum (www.Tick-the-Code.com/forum/).

One possibility is to follow a few open source projects up close and a little bit longer to 
see the effects of Tick-the-Code in the long-term. If you’re interested in volunteering 
your project or company, let me know (miska.hiltunen@qualiteers.com).  
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A3. An example file

In Figure A1, there’s a page of code from one of the open source modules of chapter 
2.4 Experiment: Open Source Wide Open.

Figure A1. Ticks on this page of code are the author’s handwriting. 

© Miska Hiltunen 2007 - 18/18 -


