
Tick-the-Code Inspection: Empirical Evidence (on Effectiveness)

Miska Hiltunen
Qualiteers, Bochum, Germany

miska.hiltunen@qualiteers.com

Prepared for, and presented first at the Annual Pacific Northwest Software Quality
Conference 2007 (www.pnsqc.org)

Miska Hiltunen teaches Tick-the-Code to software developers. After developing the
method and the training course for it, he founded Qualiteers (www.qualiteers.com). Mr.
Hiltunen is on a mission to raise the average software quality in the industry. He has
been in the software industry since 1993, mostly working with embedded software. Be-
fore starting his freelance career, he worked for eight years in R&D at Nokia. He gradu-
ated from Tampere University of Technology in Finland with a Master of Science in
Computer Science in 1996. Mr. Hiltunen lives and works with his wife in Bochum, Ger-
many.

Abstract

This paper demonstrates that as software developers we introduce a lot of inadvertent
complexity into the software we produce. It presents a method for removing inadvertent
complexity and shows how any software developer can easily learn to identify it in
source code.

The paper starts with a hypothetical scenario of software development showing how
bugs can come into being essentially from nothing. The paper also claims that the cur-
rent ways of producing software leave much to be desired. The main argument is that
there is a lot of inadvertent complexity in the software produced by the industry and that
it is possible and feasible to get rid of.

The paper presents four experiments and their results as evidence. All experiments use
the Tick-the-Code method to check source code on paper. The experiments show that
both the developers and the source code they produce can be significantly improved.
The results indicate that, almost regardless of the target source code, the developers
can easily find and suggest numerous improvements. It becomes clear from the results
that it is feasible to use Tick-the-Code often and on a regular basis. In one of the ex-
periments, the software engineers created almost 140 improvement suggestions in just
an hour (of effort). Even in the least effective experiment, the participants created on
average one suggestion per minute (70/h).

The last part of the paper demonstrates the effects of ticking code often and on a regu-
lar basis. For a software organization, nothing makes more sense than to improve the
coding phase and make sure it is up to par. Once inadvertent complexity is kept in
check on a regular basis, other concerns, like requirements analysis, can be more read-
ily taken into consideration. As long as the organization has to waste time on reworking
requirements and careless coding, maturity of operation is unachievable.

© Miska Hiltunen 2007 - 1/18 -

mailto:miska.hiltunen@qualiteers.com
mailto:miska.hiltunen@qualiteers.com
http://www.pnsqc.org/
http://www.pnsqc.org/
http://www.qualiteers.com
http://www.qualiteers.com

1. The Claim: Complexity Hole Causes Bugs
The software industry still shows signs of immaturity. Errors are part of usual practice,
project failures are common and budget overspends seem to be more the rule than the
exception. The industry is still young compared to almost any other branch of engineer-
ing. Tools and methods are changing rapidly, programming languages keep developing
and ever more people are involved in software projects. The industry is in constant tur-
moil.

1.1. A Development Episode
Let’s dive deep into a developer’s working life. John, our example software developer, is
about to create a new class in C++. The requirements tell him what the class needs to
do. The architectural design shows how the class fits with the rest of the application.
John starts writing a new method. The method starts simply, but soon the code needs to
branch according to a condition. John inserts an if statement with a carefully consid-
ered block of code for the normal case of operation. In his haste to finish the class in the
same day, John forgets to consider the case when the conditional expression isn’t true.
Granted, it is unusual and won’t happen very often.

if(FLAG1 & 0x02 || !ABNORMAL_OP)
{
 header(param, 0, 16);
 cnt++;
}

One of the class member variables is an array of integers for which John reserves
space with a plain number

int array[24];

In the vaguely named method ProcessStuff(), John needs among other things to go
through the whole array. This he accomplishes with a loop structure, like so

for(int i=0; i <= 23; i++)

In order to send the whole array to another application, the method Message() pack-
ages it along with some header data in a dynamically reserved array

Msg *m = new Msg(28);

As it doesn’t even cross John’s mind that the code could run out of memory for such a
small message he doesn’t check for the return value from the statement.

By the end of the day, John has tested his class and is happy with the way it seems to
satisfy all functional requirements. In two weeks’ time, he will change his mind. The sys-
tem tests show several anomalies in situations John would consider exotic or even im-
possible in practice. The tests need to pass though and John has no alternative but to

© Miska Hiltunen 2007 - 2/18 -

try and modify his class. This proves harder than expected and even seemingly simple
changes seem to break the code in unexpected ways. For instance, John needs to send
more integers over to the other application, so he changes the for loop to look like

for(int i=0; i <= 42; i++)

That change breaks his class in two places. It takes several rounds of unit testing for
John to find all the places related to the size of the array in the class. The hard-coded
message packaging routine Message() stays hidden for a long time causing mysteri-
ous problems in the interoperability of the two applications. The code works erratically,
sometimes crashing at strange times and other times working completely smoothly.

This development example shows how seemingly innocent design decisions lead to
complex and strange behavior. John’s slightly hurried decisions are often mistakes and
oversights, which cause real failures in the application. The failures affect the test team,
frustrate John, anger his manager and in the worst case, cause the customer to lose
faith in the development capability of the company employing John. There is a lot of
seemingly innocent complexity in source code produced today all over the world. Taking
it out is possible and even feasible, but because of a general lack of skill, ignorance of
root causes of failures and a defeatist attitude towards faults, not much is being
achieved. Constant lack of time in projects is probably the biggest obstacle for more
maintainable and understandable code.

Although complexity in software is difficult to quantify exactly, we can divide it into two
categories for clarification:

a) essential complexity (application area difficulties, modeling problems, functional is-
sues)

b) inadvertent complexity (generic programming concerns, carelessness)

This paper deals with b) inadvertent complexity.

The current working practices in the software industry leave a gaping hole for inadver-
tent complexity to creep into the source code. In large enough doses, it adversely af-
fects all activities in software projects, not just coding. Inadvertent complexity is rampant
in source code today, yet currently there are no incentives or effective methods in use to
get rid of it. Inadvertent complexity is holding the software industry back. Inadvertent
complexity is an unnecessary evil, it does not have to be this way.

© Miska Hiltunen 2007 - 3/18 -

2. The Evidence: Complexity NOW
Next four real-life experiments. A few terms related to the Tick-the-Code method used
in the experiments need to be explained. ‘A tick’ in code marks a violation of a rule. A
tick doesn’t necessarily mean a bug, in most cases it denotes an environment where
bugs are more difficult to identify. Some ticks precede bugs. The best way to think about
ticks is to see some of them (perhaps every third) as realistic improvement suggestions.
‘A rule’ is a black-and-white statement. Code either follows a rule or it doesn’t. “Do not
divide by zero” is a rule. Each rule has a name, which in this paper is written in capital
letters (RULENAME). ‘Ticking’ refers to a checker going through source code marking
rule violations one rule at a time. In other words, ticking produces ticks. ‘An author’ is
the person responsible for maintaining the source code, not necessarily the originator.
‘A checker’ ticks the source code. ‘A checker’ needs to be familiar with the programming
language (although not necessarily with the source code.) For more information, see
Chapter 3. or [2].

2.1. Experiment: Free Ticking for an Hour
In this experiment, the participants were taught Tick-the-Code as a theoretical exercise.
They were then given an hour to tick their source code using any of the predefined
rules. The participants had been instructed to bring approximately one thousand physi-
cal lines of code with them. Table 1. summarizes the results.

Participants Total time Total lines
(physical)

Total ticks Average rate
of finding

85 81h45min 93393 5900 72 ticks/h

Table 1. Experiment: Free Ticking for an Hour. With proper guidance, it takes on average less than a
minute for a software developer to generate a tick (= source code improvement suggestion). The experi-

ment took a little more than a week to conduct between Feb 6 and Feb 15, 2006.

2.2. Experiment: Before and After
Almost eighty software developers from six software companies took part in Experi-
ment: Before and After. The participants were first asked to “perform a code review”
on their own code. They were given 15 minutes to complete the task and no further ex-
planation as to what “performing a code review” means. After fifteen minutes, the num-
ber of markings they made was collected. The severity of the markings was not judged.
The collected results were extrapolated to a full hour. The participants were then taught
a new method of checking called Tick-the-Code. This took about two hours. They were
given an hour to tick the same code as before. The number of ticks was collected.

The graph in Figure 1. shows the ‘before’ and ‘after’ performances of the 78 partici-
pants. In the graph they are ranked in ascending order by their ‘before’ results. In many
cases, the number of findings for individual checkers were dramatically higher with
Tick-the-Code than before. It indicates a clear skill gap. Most developers have had no
idea what to look for in a code review, or have been overlooking smaller items whilst

© Miska Hiltunen 2007 - 4/18 -

searching for those they believe to be more critical. Given better guidelines and stricter
rules, they can find places to improve easily and quickly.

Tick-the-Code helps developers cover larger amounts of source code in a relatively
short period of time. Table 2. summarizes the overall results of the ticking part of the ex-
periment. In less than 80 person-hours, the novice checkers managed to tick over
80000 physical lines of code creating over 8200 ticks. Even if only 10% of the ticks were
valid improvement suggestions, the developers had still generated over 800 ways of
making their code better. This proves that developers can feasibly improve their code
from its current state.

Participants Total time Total lines
(physical)

Total ticks Average rate
of finding

78 78h 80218 8230 106 ticks/h

Table 2. Experiment: Before and After. The results of almost eighty software developers ticking real,
production-level source code for an hour. Covering over 80000 lines of code systematically and target-
oriented is possible and feasible with negligible time. The tick yield, i.e. the number of source code im-

provement suggestions is massive, considering that most source code had already gone through the ex-
isting quality control processes. The experiment was conducted between May 31 and Oct 23, 2006.

© Miska Hiltunen 2007 - 5/18 -

Before (Extrapolated to 1h) After (Ticks found in 1h)

0

100

200

300

400

Checkers

Figure 1. The number of findings before (the monotonically increasing line) and after (the
spikes) learning Tick-the-Code. To be more descriptive, the checkers on the X-axis are

sorted in ascending order of their extrapolated ‘before’ results. In most cases the extrapo-
lated result is much lower than the one Tick-the-Code yields. Each pair of values (‘before’

and ‘after’) on the X-axis shows the performance of an individual checker.

2.3. Experiment: Five-minute Ticking, or Surely You Can’t Tick Any Faster?
In this experiment there were 144 software developers from different organizations.
Once again, all participants had about one thousand lines of production-level code. This
time the participants were given much clearer instruction on the ticking method than in
the previous two experiments. Each time a rule was presented, the participants had ex-
actly five minutes (!) to search for its violations. Then the number of ticks was recorded.
Sometimes the participants didn’t get through all of their code, sometimes they man-
aged to have spare time before the bell rang.

The participants checked eight, nine or ten rules in a training session. With the five-
minute limit that meant that everybody spent effectively 40-50 minutes ticking. On aver-
age, each and every participant found 103 ticks in under an hour! In Table 3, you see
that the average (extrapolated) rate of finding ticks is approximately 136 ticks/h.

Averaging all collected ticks over the effective time used for checking (108h, over all
participants) gives us some interesting insights. In this calculation we treat the work-
force as a mass of work, nothing more. The ticks the participants found have been given
to this mass of work and the average has been calculated. See Table 4. for the results.
The table shows that spending an hour on proactive quality could result in 46 sugges-
tions of improving modularity by refactoring blocks of code inside bigger routines into
their own subroutines (CALL). Alternatively, a software developer could suggest 53 un-
necessary comments to be removed from clouding the code (DRY). We can also see
that in one hour, given enough source code, anybody could find over five hundred hard-
coded numbers, character constants and strings (MAGIC). Some of them are missing
information linking them to their origin and relating them to other values in the code.
That missing information is certain at least to slow down maintenance but it is also true
that some of the plain numbers will just plain cause bugs.

Partici-
pants

Total time Total lines
(physical)

Total ticks Average rate
of finding

144 4d 12h 35min > 100 000 14906 136 ticks/h
Table 3. Experiment: Five-minute Ticking. The training courses took place between 26-Oct-06 and 12-
Jun-07. Unfortunately the experimenter sometimes forgot to collect the numbers of lines from the partici-

pants, but everybody was always instructed to bring about one thousand lines of code.

Isn’t it illuminating to see that any software developer could complain about 92 bad vari-
able, function and method names and he’d just need an hour to point them out precisely
(NAME)? It would take longer to come up with better names but not prohibitively so.
How much does an error cost? How much effort does it take to test, write an error re-
port, find a responsible person, debug, fix, retest and whatever else is part of repairing
an error? One hour, ten hours, a hundred hours, a thousand hours? How many im-
provement suggestions could be found and taken into consideration before the chaotic
code results in errors? Table 4. is saying: “Many”. That is the choice for each software
developer to make. There is the option of continuing to fix errors hoping for the best and

© Miska Hiltunen 2007 - 6/18 -

then there is the option of proactively preventing errors using methods like Tick-the-
Code to clarify code now.

Rule

Ticks/h

Rule

Ticks/h

CALL CHECK-IN DEAD DEEP DEFAULT DRY ELSE

46 82 45 76 11 53 322

HIDE MAGIC NAME NEVERNULL TAG UNIQUE

186 516 93 90 18 20

Table 4. The average number of ticks found for each checking hour per rule. Software developers could
find this many violations in one hour in the code they produce, if they chose to. 144 developers checked

for 108h to create the data.

2.4. Experiment: Open Source Wide Open
Ten source code files from four different Open Source projects were randomly selected
to be ticked. The author ticked all of the modules with 24 Tick-the-Code rules. Once
again, each file was approximately one thousand physical lines long. Physical lines are
all the lines in a source code file. Physical lines are the simplest unit of measurement.
Using them avoids all problems of how to interpret empty lines, or lines containing just a
comment, or lines with multiple statements. As physical lines, they all count as one line
each, respectively. In other words, the line numbering of your favorite editor matches
the definition of physical lines exactly.

For some of the files, several versions from different phases of development were se-
lected. File address-book-ldap.c (later a.c) is a C-language module and there were four
versions of it: the first version from the year 2000, another version several evolutionary
steps later from year 2002, and two more dated in 2004 and 2007, respectively. The
format a.c(04) is used to refer to the third snapshot of file address-book-ldap.c. The file
lap_init.c (l.c) only had one version to tick. There are two versions from ipc_mqueue.c
(i.c) and OSMetaClass.cpp (O.cpp). The letters A and B are used to denote the older
and newer version, respectively. For example, O.cpp(B) refers to the newer version of
OSMetaClass.cpp. PeerConnection.java (later P.java) was the only Java file included in
the experiment. See Figure 2. for the sizes of the sampled source code files. The file
a.c, for example, has grown from a mere 400 lines to 1000 lines over the seven years of
its development.

© Miska Hiltunen 2007 - 7/18 -

Figure 2. The sizes of the sampled files. ‘Manual’ is the figure the author counted by hand. LOCphy are
physical lines (should be equal to ‘Manual’, slight errors are visible), LOCpro program code lines, LOCbl

are blank lines and LOCcom commentary lines. All the LOC counts were generated by CMT++ and
CMTjava.

In addition to ticking all the modules with all the rules, Testwell Oy, a company in Finland
(www.testwell.fi) helped with some additional measurements. Their tools CMT++ and
CMTjava were used to measure C/C++ files and the Java module, respectively. The
ticking took almost 29 hours to complete, while the tools took only seconds to complete
their tasks. The ticking revealed over 3700 ticks, i.e. possible improvements. The total
results are summarized in Table 5.

Checkers Total time Total lines
(physical)

Total ticks Average rate
of finding

1 28h 52min 8517 3723 129 ticks/h
Table 5. Experiment: Open Source Wide Open. The experiment took a little more than a month to con-

duct between 5-May and 11-Jun-07.

One of the best known complexity measurements for source code is the cyclomatic
number [1]. It points out “unstructured” code and uses graph theory to compute the cy-
clomatic number. CMT++ and CMTjava calculate the cyclomatic number for their input
files.

An interesting observation: the correlation between the cyclomatic numbers for the ten
files and the normalized total tick count series is as large as 0.7. Although the sample is
small, the files were selected in random, so the result isn’t just a coincidence. It seems
that the ticks and cyclomatic numbers are related and can both be used as indicators for

Manual LOCphy LOCpro LOCbl LOCcom

0

300

600

900

1,200

1,500

a.c(00) a.c(02) a.c(04) a.c(07) l.c i.c(A) i.c(B) P.java O.cpp(A) O.cpp(B)

© Miska Hiltunen 2007 - 8/18 -

http://www.testwell.com
http://www.testwell.com

complex source code. See Figure 3. for a graphical view of the cyclomatic number and
tick counts. Additional experiments are needed to confirm the link. One reasonable
method would be to remove the ticks already found by refactoring the modules and then
measuring them again. If there is a relationship between the two, both the tick count and
the cyclomatic number should go down.

Figure 3. Normalized tick counts and the cyclomatic numbers. The correlation between the series is
large, 0.7. Please, note that the Y-axis values of the two series have different units.

The Tick-the-Code rules are based on certain principles of coding. Breaking the princi-
ples for whatever reason will usually cause trouble sooner or later. Examining the rules
more carefully, we can divide them into four categories:

1. Extra baggage
2. Missing info
3. Chaos-inducers
4. Risky assumptions

1. Some of the rules point out unnecessary items in a module file. For example, a com-
ment that repeats what the code already says is just a waste of disk space. A prime ex-
ample is the line

count++; // increment counter

Normalized tick count (ticks/1000LOCphy) Cyclomatic number (v(G))

0

140

280

420

560

700

a.c(00) a.c(02) a.c(04) a.c(07) l.c i.c(A) i.c(B) P.java O.cpp(A) O.cpp(B)

© Miska Hiltunen 2007 - 9/18 -

Not only are they a waste of disk space, any extra comment increases chances of out-
dated comments. Such comments are distracting, and impair maintenance. One rule
points out such redundant comments (DRY). Another rule points out duplicated blocks
of code (UNIQUE), which are also usually unnecessary and harmful. A few other rules
make up the “Extra baggage” category.

2. A few rules aim at noticing when something is missing from the code. One rule asks
for an else branch to be found at each if statement (ELSE). Whenever a literal num-
ber is used in code (hard-coded), another rule is violated (MAGIC). Literal numbers
don’t reveal where they come from or if they are related to any other numbers in the
code. The missing information causes bugs very easily, or at least slows down the main-
tenance work unnecessarily. The category “Missing info” consists of similar rules.

3. There are elements in code that add to the confusion. Usually software is complex to
begin with, but certain constructs make it even harder to understand. Using the keyword
return too readily can lead to functions having too many exit points, which can hinder
understanding of the flow of code and impair its testability (RETURN). Blocks of code
that could be their own subroutine but are inside a bigger routine instead are unneces-
sarily complicating the source code (CALL). Bad names give code a bad name (NAME).
This category is called “Chaos-inducers”.

4. Blindly assuming that everything is fine is dangerous in software. Anything could go
wrong, especially with pointers. A good programmer defends his code by generously
sprinkling checks for NULL pointers in it. Some rules spot possible references through
NULL pointers (NEVERNULL), variables used without any checking (CHECK-IN) and
freed, but not invalidated pointers (NULL). These rules reveal locations where a more
defensive approach is possible. The category is called “Risky assumptions”. Table 6.
shows the categories and their rules.

Extra baggage Missing info Chaos-inducers Risky assumptions

DEAD DEFAULT CALL CHECK-IN

DRY ELSE NAME NEVERNULL

INTENT MAGIC RETURN NULL

ONE PTHESES SIMPLE CONST 1ST

UNIQUE TAG FAR ZERO

ACCESS DEEP PLOCAL

HIDE FOCUS ARRAY

VERIFY
Table 6. The four categories of rules. Twenty-four of the rules form the ‘active’ rule-set in Tick-the-Code.

© Miska Hiltunen 2007 - 10/18 -

The normalized tick counts for all categories are shown in Figure 4. Apart from the file
i.c, all files leave out valuable information, which needs to be dug up or guessed in
maintenance. Every tenth line of file a.c contains some confusing constructs. On the
other hand, there doesn’t seem to be too much extra baggage in any of the example
files. This is hardly surprising considering the tendency in human nature to be too lazy
rather than overly explicit or verbose. All four categories correlate strongly with the cy-
clomatic number. The correlation for “Extra baggage” is 0.67, for “Missing info” as high
as 0.96, for “Chaos-inducers” 0.73 and for “Risky assumptions” 0.68.

Figure 4. The normalized tick counts for the rule categories. Files a.c and l.c will be most likely to suffer
problems in their maintenance because of missing information. On average, more than every third line
(350/1000) in l.c is missing some information. In this group, the file i.c seems much better to maintain.

2.5. Conclusions Drawn from the Experiments
A. Software developers could perform much better code reviews than they currently do.
B. Currently produced source code leaves a lot to be desired in terms of understandabil-
ity and maintainability.
C. Tick count measures (at least some aspects of) software complexity, just like cyclo-
matic number does.
D. Software developers could prevent many errors if they chose to do so.
E. The effort to do so would be negligible.
F. Systematic ticking of the code leads to code that is easier to maintain.
G. Easier-to-maintain source code benefits all stake-holders in the software industry.

Extra baggage Missing info Chaos-inducers Risky assumptions

0

80

160

240

320

400

a.c(00) a.c(02) a.c(04) a.c(07) l.c i.c(A) i.c(B) P.java O.cpp(A) O.cpp(B)

© Miska Hiltunen 2007 - 11/18 -

3. A Solution: Tick-the-Code
[2] describes the details of Tick-the-Code. Suffice to say that it is a rule-based ap-
proach for reviewing code on paper. Checkers mark each and every rule violation on the
printed paper and deliver the ticks to the author of the code. The author considers each
and every tick, but maintains the right to silently ignore any one of them. Whenever
possible the author replaces the ticked code with a simpler, more maintainable version.
Sometimes the change is simple, sometimes it is more than a trivial refactoring.

The rules are extremely clear and explicit. They designate an axis and show which end
of the axis is the absolute evil. For example, there is a rule called ELSE, which says that
“each if must have an else”. On the one end of the axis there is an if with an else
branch and on the other extreme there is the if without an else branch. The rule says
that the former case is right and that the latter is absolutely wrong. The reasoning be-
hind the rule is that if the code could possibly be missing something important (the code
for the exceptional case in the else branch), it could lead to problems. And vice versa,
an if with a carefully considered else branch is less likely to be problematic. Missing
information, or in this case missing code, is a hole in the logic of the code.

Every ticked if provides the author with a chance to double-check his thinking and fix it
before a functional bug occurs. The same principle applies to all the rules, most of
which are not quite as simple to find as rule ELSE. Each rule is based on a solid pro-
gramming principle and divides a dimension into two extremes, one right, one wrong.
Making the world black-and-white is an excellent way to provide clarity, even though it
only catches certain errors. The good thing is that it normally catches all of them. Some-
times the else branch contains the wrong kind of code, sometimes it is the if. Com-
bined with a sensible author, this kind of merciless ticking starts to make sense in prac-
tice.

The search is very often the most time consuming part of an error hunt. Not the fixing,
nor the testing, nor the verification of the fix, but the search. In Tick-the-Code the
search has been tweaked to be as fast as possible. Even though it is manual, it is fast in
comparison to most other methods. It might seem that Tick-the-Code is aimed at mak-
ing the source code better. That is the truth, but not the whole truth. The main purpose
is to make the checkers better. In other words, in ticking the checkers get to see a lot of
source code, some of it written by themselves, most of it written by somebody else, and
they look at code from a different stance than during the source code construction
phase. Exposure to others’ source code gives them examples of how problems can be
solved and have been solved.

With the help of the rules and principles the checkers learn to prevent failures. By see-
ing the code their colleagues are writing they also learn at least what the colleagues are
working on. Ticking code helps spread information about the developers and their tasks
among the checkers (i.e. developers). It helps make the current product better and at
the same time teaches the checkers new ideas and thus helps make future products
better.

© Miska Hiltunen 2007 - 12/18 -

4. The Effect: Complexity in the Future - a Thought
Experiment
Regular use of Tick-the-Code makes the produced source code clearer and easier to
maintain. Clearer source code contains less careless programming errors. There are
still errors, though. Even a perfect implementation phase cannot produce perfect source
code if the requirements are poor. The developers will notice that meeting bad require-
ments doesn’t make the customer happy. They can apply the lessons learned from the
rule-driven and systematic ticking of code. Their analysis can help in gathering require-
ments. They notice missing requirements, vaguely described requirements and several
unnecessary, or minor requirements or redundant ones. Some of the requirements just
add to the overall confusion. The developers can considerably improve the quality of the
requirements when they add the missing ones, reformulate the fuzzy ones, uncover the
hidden assumptions and remove the unnecessary or dangerous ones and separate the
minor ones from the important ones. When both the implementation and requirement
gathering phases are under control, reworking becomes almost unnecessary. Require-
ments meet customer expectations and implementation fulfills the requirements.

Similarly, as the organization saves time with less rework, they can turn their attention to
other problematic areas. With problems in the coding process, the organization isn’t
able to build a real software culture. Their whole development process is immature;
there are design and architecture problems, and both error handling and testing have
been overloaded. This all can change now systematically. With the basics under control,
a software development culture can emerge and higher-level concerns like usability can
come to the fore.

The most natural place to start making a software organization more mature is coding.
As the experiments show, many software organizations try to build on the quicksand of
unnecessarily complex code.

5. References
[1] T. J. McCabe, “A Complexity Measure,” IEEE Transactions on Software Engi-

neering, Vol. SE-2, No.4, December 1976

[2] M. Hiltunen, “Tick-the-Code Inspection: Theory and Practice,” Software Quality
Professional, Vol. 9, Issue 3, June 2007

© Miska Hiltunen 2007 - 13/18 -

6. Appendix
A1. Rules

The table provides a list of all the rules mentioned in this paper. For various reasons,
exactly 24 rules form the active rule set of Tick-the-Code.

Name Rule

DEAD Avoid unreachable code.

DRY A comment must not repeat code.

INTENT A comment must either describe the intent of the code or summarize it.

ONE Each line shall contain at most one statement.

UNIQUE Code fragments must be unique.

Table A1. Extra baggage rules.

Name Rule

DEFAULT A ‘switch’ must always have a ‘default’ clause.

ELSE An ‘if’ always has an ‘else’.

MAGIC Do not hardcode values.

PTHESES Parenthesize amply.

TAG Forbidden: marker comments.

ACCESS Variables must have access routines.

HIDE Direct access to global and member variables is forbidden.

Table A2. Missing info rules.

© Miska Hiltunen 2007 - 14/18 -

Name Rule

CALL Call subroutines where feasible.

NAME Bad names make code bad.

RETURN Each routine shall contain exactly one ‘return’.

SIMPLE Code must be simple.

FAR Keep related actions together.

DEEP Avoid deep nesting.

FOCUS A routine shall do one and only one thing.

Table A3. Chaos-inducers.

Name Rule

CHECK-IN Each routine shall check its input data.

NEVERNULL Never access a ‘NULL’ pointer or reference.

NULL Set freed or invalid pointers to ‘NULL’.

CONST 1ST Put constants on the left side in comparisons.

ZERO Never divide by zero.

PLOCAL Never return a reference or pointer to local data.

ARRAY Array accesses shall be within the array.

VERIFY Setter must check the value for validity.

Table A4. Risky assumptions rule category.

© Miska Hiltunen 2007 - 15/18 -

A2. Miscellaneous questions and answers

1. How is Tick-the-Code different from implementing coding standards?

The answer depends on what “implementing coding standards” means. To me, Tick-
the-Code “implements coding standards”. What I find is that often people in software
organizations think they have implemented coding standards when they have written a
document titled “Coding standards”. The other half is normally missing. Coding stan-
dards need reenforcing. Without constant and active checking, the coding standards are
not followed. At least you can’t know for sure.

Tick-the-Code provides a limited set of clear rules and an extremely effective way of
reenforcing them. The rules don’t deal with stylistic issues and they don’t set naive nu-
merical limitations on the creativity of the developers. On the other hand, the veto rights
of the author (to ignore any tick) keep the activity sensible. It makes it possible to break
the rules when necessary without losing effectiveness. Too strict checking can easily
turn in on itself, and becomes counterproductive.

2. How long does it take to learn Tick-the-Code? Does it depend on the number of
rules?

The technique of checking one rule at a time is fairly quickly explained and tried out. In
three hours, I’ve managed to teach the method and hopefully instill a sense of motiva-
tion and positive attitude towards striving for quality to help make Tick-the-Code a habit
for the participants. It does depend on the number of rules, yes. Some of the rules are
simple searches for keywords, while others demand a deep understanding of software
architecture. You learn the rules best when you try them out and when you receive
feedback on your own code so that you see when you’ve violated certain rules.

3. How many rules did you use in your tests? What is a reasonable number? Can you
have too many rules?

Good questions. In most of the experiments, the participants checked for up to an hour.
Normally they checked with up to nine different rules in that time. I have a rule of thumb
that says that you can check one thousand lines of code with one card in one hour. One
card contains six rules and an hour of checking is a reasonable session with complete
concentration. In the experiments the time for each rule is limited so that the total check-
ing time won’t exceed one hour.

You can definitely have too many rules, yes. Some coding standards contain so many
rules and guidelines that if they weren’t written down, nobody would remember all of
them. The worst example so far has been a coding standard with exactly 200 rules and
guidelines. How are you supposed to reenforce all those rules?

4. Does awareness of the rules improve the code a developer produces?

Yes, that is the main idea of Tick-the-Code.

© Miska Hiltunen 2007 - 16/18 -

5. Can different people look at the same code using different rules?

The fastest way to cover all 24 rules is to divide them among four checkers and have
them check the same code in parallel. Yes, that is possible and recommended.

6. Can it be automated?

Some of the rules are available in static analysis tools, so yes, they can be automated.
The fact that those rules are most often violated, leads me to believe that such automa-
tion is not working. Whatever the reason, code always contains violations of simple
rules. Simple means simple to find, not necessarily error-free. Breaking a simple rule
can have fatal consequences in the code.

My opinion is that automating the checking of some of the rules is taking an opportunity
away from the checkers. They need to expose themselves to code as much as possible
in order to learn effectively. What better way to start exposing than looking for rule viola-
tions, which you are sure to find? Getting a few successful finds improves the motivation
to continue and makes it possible to check for more difficult rules.

7. Where do you plan to go from here?

There will be a few articles more in this area, maybe a paper or two, too. I have a book
in the works about Tick-the-Code. In my plans Tick-the-Code is just one part of a
quality-aware software development philosophy. I call it ‘qualiteering’. That’s why my
website is called www.qualiteers.com.

I will continue training people in willing companies and spread the word. It is my hope
that Tick-the-Code will reach a critical mass in the development community so that a
vibrant discussion can start in Tick-the-Code Forum (www.Tick-the-Code.com/forum/).

One possibility is to follow a few open source projects up close and a little bit longer to
see the effects of Tick-the-Code in the long-term. If you’re interested in volunteering
your project or company, let me know (miska.hiltunen@qualiteers.com).

© Miska Hiltunen 2007 - 17/18 -

http://www.qualiteers.com
http://www.qualiteers.com
http://www.Tick-the-Code.com/forum/
http://www.Tick-the-Code.com/forum/
mailto:miska.hiltunen@qualiteers.com
mailto:miska.hiltunen@qualiteers.com

A3. An example file

In Figure A1, there’s a page of code from one of the open source modules of chapter
2.4 Experiment: Open Source Wide Open.

Figure A1. Ticks on this page of code are the author’s handwriting.

© Miska Hiltunen 2007 - 18/18 -

